Paramagnetic Species in Nitrogen-doped TiO$_2$: a Key to Understand Photocatalytic Activity in Visible Light?

M.Cristina Paganini, Stefano Livraghi, Mario Chiesa, Elio Giamello

Dept. Chimica IFM, Università di Torino, and Nanostructured Interfaces and Surfaces (NIS) Centre of Excellence (www.nis.unito.it) Via Giuria 9, 10125-Torino. Italy

Photocatalytic oxidation constitutes one of the most promising methods for indoor and outdoor air purification. Mineralization of a number of organic pollutants can be achieved at ambient temperature and pressure, using the anatase phase of TiO$_2$ activated by UV irradiation 1,2. Solar energy contains only about 5% UV light and much of the rest is visible light. In order to utilize solar energy efficiently in photocatalytic reactions, it is necessary to develop a visible light reactive photocatalyst having smaller band gaps than TiO$_2$ rutile and anatase.

In 1986 Sato 3 reported that calcinations of NH$_4$Cl containing titanium hydroxide caused the photocatalytic sensitization of TiO$_2$ into the visible light region. The author proposed that the powder prepared according to the described method are actually NO$_x$-doped TiO$_2$ and that the sensitization of these materials is due to the presence of NO$_x$ impurity.

Aim of our recent work was to synthesize and characterize new materials based on N-doped TiO$_2$. Several N/TiO$_2$ materials were prepared via sol-gel technique using solutions containing various kind of nitrogen compounds. EPR was employed to verify the presence of paramagnetic entities formed during the synthesis. The presence of nitrogen (as paramagnetic N containing species) in the system has been, in fact, unambiguously demonstrated by CW-EPR4 both in the X-band and in the Q-band mode. The EPR spectra have been recorded at room temperature and at 77K. Two different paramagnetic species are present, as confirmed by isotopic substitution of 14N with 15N, during the sol gel preparation. The former species is the nitric oxide molecular radical (NO) trapped in the porous system of the solid while the second one is an interstitial N atom in the oxide lattice which is responsible of a localized state in the oxide band gap as indicated by DFT calculations.

