Spin Label EPR Studies of *E. coli* Cytochrome b_3

Gaye F. White1, Sarah Field1, Sophie Marritt1, Myles R. Cheesman1, Andrew J. Thomson1
Lai Lai Yap2, Robert B. Gennis2

1School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
2Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA

Site-directed spin labelling (SDSL) has a wide range of applications in the analysis of protein structure, function and dynamics and can be complementary to x-ray crystallography and NMR.$^{1-3}$ The technique has been successfully applied to studies of high molecular weight proteins and membraneous systems where preparation of crystals is difficult and NMR approaches are generally not applicable due to lack of spectral resolution.$^{4-6}$ Cell respiration in *E.coli* is catalyzed by the membrane-bound, Cytochrome b_3 ubiquinol oxidase.7 During its catalytic cycle O_2 is reduced to H_2O, coupled with the translocation of 4 protons across the bacterial membrane. Cytochrome b_3 is a 160 kDa, 4 unit, heme-copper oxidase where all the redox centres are located in sub-unit I. Unlike Cytochrome c oxidases, sub-unit II has no Cu$_A$ centre, instead heme b receives electrons directly from a ubiquinol molecule. Spin label EPR is being used to investigate interactions between key parts of Cytochrome b_3 and to detect any conformational changes that occur during different stages of its catalytic cycle.

Acknowledgments: Financial support from BBSRC (grant - 83/B17596)

References: