ENDOR study of the heterometallic wheel
\[((\text{CH}_3)_2\text{NH}_2)[\text{Cr}_7\text{NiF}_8(\text{O}_2\text{CCCH}_3)]_{16} \]

Joanna Wolowska, David Collison, Damien M. Murphy, Eric J.L. McInnes, Grigore A. Timco and Richard E.P. Winpenny

\(^a\) EPSRC c.w. EPR Service, School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
\(^b\) Department of Chemistry, University of Wales Cardiff, Cardiff CF1 3TB, UK
\(^c\) School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK

The crystallographically characterised family of heterometallic wheels\(^1\) \[\text{Cr}_7\text{MF}_8(\text{O}_2\text{CCCH}_3)_{16}^- \], where \(M = \text{Ni}^{\text{II}}, \text{Co}^{\text{II}}, \text{Mn}^{\text{II}} \) or \(\text{Fe}^{\text{II}} \), prepared directly from the homometallic \[\text{Cr}_8\text{F}_8(\text{O}_2\text{CCCH}_3)_{16} \], shows adjacent antiferromagnetically coupled metal ions bridged by one \(\mu_2^-\text{F} \) and two \(\mu^-\text{1,3-pivalates} \) (Fig. 1). A dialkylammonium cation in the centre of the metallocycle forms three N-H-F bonds. Paramagnetic ground spin states can be tuned by the choice of \(M(\text{II}) \). For example, Q-band EPR of \{Cr\(_7\text{Ni} \)\}, the title compound (1), at 5 K shows an axial \(S = \frac{1}{2} \) spectrum with \(g_x = 1.740 \) and \(g_{xy} = 1.781 \). An ENDOR investigation (Fig. 2) of \{Cr\(_7\text{Ni} \)\} at both X- and Q-band frequencies shows coupling to \(^1\text{H} \) and \(^{14}\text{N} \) nuclei of the bridging ammonium cations in the cavity of the wheel. Most surprisingly no hyperfine coupling to \(^{19}\text{F} \) has been detected, despite extensive variation of experimental parameters. The electronic structure of 1, as revealed by ENDOR data, will be described.